1077-05-2308 Craig Eric Larson* (clarson@vcu.edu), Taylor Short and Bethany Turner. Towards Vizing's Independence Number Conjecture.
The chromatic index χ^{\prime} of a graph is the minimum number of colors that are required so that incident edges are colored different colors. A graph G with maximum degree Δ is edge critical if $\chi(G-e)=\Delta$ for every edge e. The independence number α is the cardinality of a largest set of vertices which are pairwise non-adjacent. Vizing conjectured that $\alpha \leq \frac{n}{2}$ for edge-critical graphs. Woodall has shown that $\alpha \leq \frac{3 n}{5}$ for these graphs. We discuss improvements on this bound that follow from the Independence Decomposition Theorem: namely that any graph can be decomposed into unique subgraphs $G[X]$ and $G\left[X^{c}\right]$ having certain nice properties. It follows immediately from this theorem that $\alpha \leq \frac{3 n}{5}$ for any graph where $|X| \leq \frac{n}{5}$. Further improvements are possible using the special structure of edge-critical graphs. (Received September 22, 2011)

