1077-05-2127 Bonnie C. Jacob and Jobby Jacob* (jxjsma@rit.edu). From sum optimal to max optimal graph rankings.
Given a graph G, and a non-negative integer a, a function $f: V(G) \rightarrow\{a, a+1, \ldots, b\}$ is an $[a, b]$-ranking of G if for $u, v \in V(G), f(u)=f(v)$ implies that every $u v$ path contains a vertex w such that $f(w)>f(u)$. That is, f is an [a,b]-ranking of G if and only if the function defined by $g(v)=f(v)-a+1$ is a k-ranking of G.

We use this generalization of k-rankings to explore l_{p} norm optimality for all positive integers p and for $p=\infty$. The l_{∞} optimality produces the rank number of a graph when $a=1$. We will discuss the effect of different l_{p} norms on optimal rankings of graphs. (Received September 21, 2011)

