1077-05-2084 Henry Escuadro* (escuadro@juniata.edu) and Futaba Fujie-Okamoto. Total Detection Numbers of Graphs.
Let G be a connected graph of order $n \geq 3$ and let $c: E(G) \rightarrow\{1,2, \ldots, k\}$ be a coloring (or labeling) of the edges of G for some positive integer k (where adjacent edges may be colored the same). The color code of a vertex v of G is the ordered k-tuple

$$
\operatorname{code}_{c}(v)=\left(a_{1}, a_{2}, \cdots, a_{k}\right)\left(\text { or simply } \operatorname{code}_{c}(v)=a_{1} a_{2} \cdots a_{k}\right),
$$

where a_{i} is the number of edges incident with v that are colored i for $1 \leq i \leq k$. The coloring c is a detectable coloring if distinct vertices of G have distinct color codes.

For a detectable coloring $c: E(G) \rightarrow\{1,2, \ldots, k\}$ of a graph G, we define the value of c as

$$
\operatorname{val}(c)=\sum_{e \in E(G)} c(e)
$$

The total detection number of G is defined by

$$
\operatorname{td}(G)=\min \{\operatorname{val}(c)\}
$$

where the minimum is taken over all detectable colorings of G.
In this talk, we investigate the total detection numbers of cycles and complete graphs. (Received September 21, 2011)

