1077-05-2036 Daniel Schaal* (daniel.schaal@sdstate.edu), Dept. of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, and Melanie Zinter. On Continuous Rado Numbers.
In 1916, I. Schur proved the following theorem: For every integer t greater than or equal to 2 , there exists a least integer $\mathrm{n}=\mathrm{S}(\mathrm{t})$ such that for every coloring of the integers in the set $1,2, \ldots, \mathrm{n}$ with t colors there exists a monochromatic solution to $\mathrm{x}+\mathrm{y}=\mathrm{z}$. The integers $\mathrm{S}(\mathrm{t})$ are called Schur numbers and are known only for $\mathrm{t}=2, \mathrm{t}=3$ and $\mathrm{t}=4$. R . Rado, who was a student of Schur, found necessary and sufficient conditions to determine if an arbitrary linear equation admits a monochromatic solution for every coloring of the natural numbers with a finite number of colors. Let L represent a linear equation and let t be an integer greater than or equal to 2 . The least integer n, provided that it exists, such that for every coloring of the integers in the set $1,2, \ldots, n$ with t colors there exists a monochromatic solution to L is called the t -color Rado number for L . If such an integer n does not exist, then the t -color Rado number for L is infinite. In this talk we will introduce a variation of the classical Rado numbers. The least integer n, provided that it exists, such that for every coloring of the real numbers from 1 to n with t colors there exists a monochromatic solution to L is called the t-color continuous Rado number for L. (Received September 21, 2011)

