1077-05-1804 Keenan Monks (monks@college.harvard.edu), Ken G. Monks* (monks@scranton.edu), Ken M. Monks (monks@math.colostate.edu) and Maria Monks (monks@math.berkeley.edu). On the Distribution of Arithmetic Sequences in the $3 x+1$ Graph. Preliminary report.
In a previous paper, K. M. Monks proved that every arithmetic sequence intersects every connected component of the digraph \mathcal{G} of the famous $3 x+1$ dynamical system $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$ on the positive integers. In this talk, we study the specific distribution of arithmetic sequences in \mathcal{G} to obtain stronger results for certain arithmetic sequences. In particular, we determine the structure of groups first constructed by K. M. Monks and use them to the find short paths in \mathcal{G} from an arbitrary positive integer x to an element of a given arithmetic sequence. We show that every nontrivial infinite back-tracing path in \mathcal{G} must contain an integer congruent to $2 \bmod 9$. We then use similar methods to show that every nontrivial cycle and every divergent orbit in the positive integers contains an integer congruent to $20 \bmod 27$. (Received September 21, 2011)

