1077-05-1761 Yanting Liang* (yliang@smcm.edu), Mathematics and Computer Science Department, St. Mary's College of Maryland, St. Mary's City, MD 20686. Mod $(2 p+1)$-orientations in graphs.
An orientation of an undirected graph G is a $\bmod (2 p+1)$-orientation if under this orientation, the net out-degree at every vertex is congruence to zero $\bmod 2 p+1$. A graph H is $\bmod (2 p+1)$-contractible if for any graph G that contains H as a subgraph, the contraction G / H has a $\bmod (2 p+1)$-orientation if and only if G has a $\bmod (2 p+1)$-orientation (thus every $\bmod (2 p+1)$-contractible graph has a $\bmod (2 p+1)$-orientation). Jaeger in 1984 conjectured that every $(4 p)$ -edge-connected graph has a mod $(2 p+1)$-orientation. It has also been conjectured that every $(4 p+1)$-edge-connected graph is $\bmod (2 p+1)$-contractible. I will introduce some recent results on $\bmod (2 \mathrm{p}+1)$-orientations in graphs. (Received September 20, 2011)

