Iraj Kalantari and Mojtaba Moniri* (m-moniri@wiu.edu), Department of Mathematics, Western Illinois University, 1 University Circle, Macomb, IL 61455. Beatty Sequences and Exponential Complexity Issues. Preliminary report.
We prove results of the following type with implications to algorithms for binary expansions and Beatty sequences of certain low complexity real numbers. Consider two double sequences $\left(p_{n}, q_{n}\right)_{n \in \mathbb{N}}$ defined by $p_{0}=200, q_{0}=500$, $p_{n+1}=p_{n}-0.1\left(q_{n}-500\right)$, and $q_{n+1}=q_{n}+0.2\left(p_{n}-100\right)$; and $\left(r_{n}, s_{n}\right)_{n \in \mathbb{N}}$ defined by $r_{0}=1, s_{0}=10, r_{n+1}=2 r_{n} s_{n}$, and $s_{n+1}=s_{n}^{2}-2 r_{n}^{2}$. Then for all $n \in \mathbb{N}$, the cardinality of $\left\{i \leq 2^{n} \mid\left(q_{i}-500\right)\left(q_{i+1}-500\right)<0\right\}$ is odd if and only if $r_{n} s_{n}<0$. (Received September 22, 2011)

