1024-42-71Alex Iosevich and Mihail N Kolountzakis* (kolount@gmail.com), School of Mathematics,
Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332, and Mate Matolcsi.
Covering the plane by rotations of a lattice arrangement of disks.

Suppose we put an ϵ -disk around each lattice point in the plane, and then we rotate this object around the origin for a set Θ of angles. When do we cover the whole plane, except for a neighborhood of the origin? It is very easy to see that if $\Theta = [0, 2\pi]$ then we do indeed cover. The problem becomes more interesting if we try to achieve covering with a "small" closed set Θ . For instance, we prove that any arc Θ suffices for covering. (Received December 28, 2006)