1024-20-78 Michael D. Fried* (mfried@math.uci.edu), 3547 Prestwick Rd, Billings, MT 59101. Maximal Frattini quotients of p-Poincaré Mapping class groups.
The Main Conjecture on Modular Towers (MTs) relates the R(egular)I(nverse) G (alois) P (roblem) and the S (trong) T (orsion) C (onjecture).

Assume G is p-perfect (no \mathbb{Z} / p quotient, but p divides $|G|$). Proving the Main Conjecture uses group extensions $M_{G, O}$ of G by the p-completion of a fundamental group: O is a braid orbit on a set defined by p^{\prime} conjugacy classes $\mathrm{C}_{1}, \ldots, \mathrm{C}_{r}=\mathbf{C}$ in G.

Three $[\mathrm{F}$ (rattini) P (rinciple)s] combinatorially interpret geometric cusps on tower levels attached to (G, \mathbf{C}, p). When $r=4$, levels are upper half-plane quotients covering the j-line. A cusp is a p cusp if p divides its ramification index.
[FP1] interprets p cusps combinatorially.
[FP2] is a condition guaranteeing an infinite sequence of cusps.
[FP3] is an iff condition for all cusps over a given one to be p-cusps.
These and the Fried-Serre Spin Lifting formula show how to produce p-cusps when $p=2$ (so proving the Main Conjecture).
We use the graphical shift-incidence matrix coming from a pairing on cusps. Allows comparing general MT cusps with those on modular curves. (Received December 29, 2006)

