1024-20-166

Daniel K. Nakano^{*} (nakano@math.uga.edu), Department of Mathematics, University of Georgia, Athens, GA 30602. On Kostant's Theorem for Lie Algebra Cohomology. Preliminary report.

Let \mathfrak{g} be a complex simple Lie algebra, \mathfrak{p}_J be a parabolic subalgebra with unipotent radical \mathfrak{u}_J where J denotes a subset of simple roots. Kostant proved a famous theorem which computes the Lie algebra cohomology $H^{\bullet}(\mathfrak{u}_J, L(\lambda))$ where $L(\lambda)$ is a finite-dimensional \mathfrak{g} -module.

Over fields of positive characteristic, Kostant's theorem remains valid as long as the characteristic is greater than or equal to h - 1 where h is the Coxeter number for the associated root system for \mathfrak{g} and the high weight of $L(\lambda)$ is in the bottom alcove. In this talk, I will provide new insights into Kostant's theorem which will be useful in finding a suitable formulation for small primes. The results presented in this talk were obtained by the University of Georgia VIGRE Algebra Group. (Received January 07, 2007)