Scott T. Chapman* (schapman@trinity.edu), Trinity University, Department of Mathematics, One Trinity Place, San Antonio, TX 78212-7200, Paul Baginski, University of California at Berkeley, Department of Mathematics, Berkeley, CA 94720, and George Schaeffer, Carnegie Mellon University, Department of Mathematical Sciences, Pittsburgh, PA 15213. On the Δ-set of a singular arithmetical congruence monoid. Preliminary report.
If a and b are positive integers with $a \leq b$ and $a^{2} \equiv a(\bmod b)$, then the set

$$
M_{a, b}=\{a+k b \mid k \in \mathbb{N} \text { and } k \geq 0\} \cup\{1\}
$$

is is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For $m \in M_{a, b}$, if $m=\prod_{i=1}^{t} x_{i}$ where each x_{i} is an irreducible of $M_{a, b}$, then t is called a factorization length of m. We denote by $\mathcal{L}(m)=\left\{m_{1}, \ldots, m_{k}\right\}$ (where $m_{i}<m_{i+1}$ for each $1 \leq i<k$) the set of all possible factorization lengths of m. The Delta set of m is defined by $\Delta(m)=\left\{m_{i+1}-m_{i} \mid 1 \leq i<k\right\}$ and the Delta set of $M_{a, b}$ by $\Delta\left(M_{a, b}\right)=\cup_{m \in M_{a, b}} \Delta(m)$. We consider $\Delta(M)$ for $M_{a, b}$ when $\operatorname{gcd}(a, b)>1$. This set is fully characterized when $a=b$ and when $\operatorname{gcd}(a, b)=p^{\alpha}$ for p a rational prime and $\alpha>0$. (Received January 04, 2007)

