1024-16-171

Jason P Bell* (jpb@math.sfu.ca), Department of Mathematics, 8888 University Dr., Burnaby, BC V5A 1S6, Canada, and Stephane Launois. *Primitive ideals in quantum matrices*. Preliminary report.

Goodearl and Letzter showed that if one uses the torus action on a ring of quantum matrices, then there are finitely many prime ideals, called *H*-primes, stable under this action. Cauchon later gave a formula for the number of *H*-primes in the ring on $m \times n$ quantum matrices. We consider the following question: how many *H*-primes in the ring of $m \times n$ quantum matrices are primitive? Lenagan and Launois answered this question for $1 \times n$ quantum matrices. We give a formula for the number of primitive *H*-prime ideals in $2 \times n$ and $3 \times n$ quantum matrices. In particular, we show that for $1 \times n$ quantum matrices, the proportion of primitive *H*-primes tends to 1/2 as $n \to \infty$; for $2 \times n$ quantum matrices, the proportion of primitive *H*-primes tends to 3/8; and for $3 \times n$ quantum matrices, the proportion of primitive *H*-primes tends to 15/64. We give several conjectures about the distribution of primitive *H*-primes for $m \times n$ quantum matrices for general *m* and *n*. (Received January 08, 2007)