1024-13-77

Gennady Lyubeznik^{*} (gennady@math.umn.edu), Department of Mathematics, 206 Church Street S.E., University of Minnesota, Minneapolis, MN 55455. A necessary condition for the vanishing of some local cohomology in complete regular local rings. Preliminary report.

Let R be a complete regular local ring containing a field. Let n be the dimension of R and assume the residue field of R is separably closed. Let I be an ideal of R and let P_1, \ldots, P_s be the minimal primes of I. Let Δ be the simplicial complex on vertices $\{1, \ldots, s\}$ such that a simplex $\{i_0, \ldots, i_j\}$ is included in Δ if and only if $P_{i_0} + \ldots + P_{i_j}$ is primary to the maximal ideal of R.

It has been known that $H_I^i(R) = 0$ for $i \ge n-1$ if and only if $\dim R/P_i \ge 2$ for every i and Δ is connected. We show that $H_I^i(R) = 0$ for $i \ge n-2$ only if $\tilde{H}_*(\Delta; \mathbb{Z}/p\mathbb{Z}) = 0$ for * = 0, 1 where $\tilde{H}_*(\Delta; \mathbb{Z}/p\mathbb{Z})$ denotes the reduced singular homology of Δ with coefficients in $\mathbb{Z}/p\mathbb{Z}$ and p is the residual characteristic of R. (Received December 29, 2006)