Susil Kumar Jena* (susil_kumar@yahoo.co.uk), Department of Electronics \& Telecommunication, KIIT University, Bhubaneswar-751024, Orissa, India. On the diophantine equation: $A^{2}+B^{4}+C^{4}=D^{8}$. Preliminary report.
The diophantine equation: $A^{2}+B^{4}+C^{4}=D^{8}$ has infinitely many solutions in positive integers, the first four solutions being $(47,4,8,3),(6433,28,32,9),(661633,992,128,33)$ and $(47447953,948,648,83)$ for (A, B, C, D). In the present paper, the author would give a parametric solution for this problem. The result would broaden our understanding of the peculiar nature of such similar problems in diophantine arithmetic and especially on the Eular's equation: $x^{4}+y^{4}+z^{4}=$ t^{4}. (Received January 09, 2007)

