1024-11-187 Ognian Trifonov* (trifonov@math.sc.edu), Department of Mathematics, LeConte College, 1523 Greene Street, University of South Carolina, Columbia, SC 29208, Michael Filaseta (filaseta@math.sc.edu), Department of Mathematics, LeConte College, 1523 Greene Street, University of South Carolina, Columbia, SC 29208, and Travis Kidd. On the irreducibility of the Laguerre polynomials $L_{m}^{(m)}(x)$.
The generalized Laguerre polynomials are defined by

$$
L_{m}^{(\alpha)}(x)=\sum_{j=0}^{m} \frac{(m+\alpha) \cdots(j+1+\alpha)(-x)^{j}}{(m-j)!j!}
$$

Back in the 1930's I. Schur showed that $L_{m}^{(1)}(x)$ for odd $m>1$, and $L_{m}^{(-m-1)}(x)$ when m is divisible by 4, have associated Galois group the alternating group A_{m}. In the case $m \equiv 2(\bmod 4)$, R. Gow proved that $L_{m}^{(m)}(x)$ has associated Galois group A_{m} too, provided $L_{m}^{(m)}(x)$ is irreducible and $m>2$. We finish I. Schur's work by showing that $L_{m}^{(m)}(x)$ is irreducible when $m \equiv 2 \quad(\bmod 4)$ and $m>2$. (Received January 08, 2007)

