1024-11-101 Michael J. Mossinghoff* (mimossinghoff@davidson.edu), Department of Mathematics, Davidson College, Davidson, 28035-6996, Peter Borwein (pborwein@cecm.sfu.ca), Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada, and Ron Ferguson (rferguson@pims.math.ca), Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada. Sign changes in sums of the Liouville function.
Let $\lambda(k)$ denote the Liouville lambda function, the completely multiplicative function defined by $\lambda(p)=-1$ for every prime p. In 1919, Pólya noted that the Riemann hypothesis follows if the sum $L(n)=\sum_{k=1}^{n} \lambda(k)$ does not change sign for large n, and in 1948 Turán noted a similar property for the function $T(n)=\sum_{k=1}^{n} \lambda(k) / k$. In 1958, Haselgrove proved that both $L(n)$ and $T(n)$ change sign infinitely often, without determining any precise values where a sign change occurs. In 1960, Lehman found an integer $n_{0}>1$ where $L\left(n_{0}\right)>0$, but no specific integer n_{1} had been found where $T\left(n_{1}\right)<0$. We describe a recent large computation that has determined the smallest such integer. (Received January 03, 2007)

