1021-57-35 Vladimir V Chernov* (Vladimir.Chernov@dartmouth.edu), Mathematics Department, 6188 Bradley Hall, Dartmouth College, Hanover, NH. Poisson and other algebras on bordism groups of garlands.

Fix an oriented manifold M and a set \mathfrak{N} consisting of closed oriented manifolds. Roughly speaking, the space $G_{\mathfrak{N},M}$ of \mathfrak{N} -garlands in M is the space of mappings into M of singular manifolds obtained by gluing manifolds from \mathfrak{N} at some marked points.

We introduce operations \star and $[\cdot, \cdot]$ on the tensor product of \mathbb{Q} and a certain bordism group $\widehat{\Omega}_*(G_{\mathfrak{N},M})$. For \mathfrak{N} consisting of odd-dimensional manifolds, these operations make $\widehat{\Omega}_*(G_{\mathfrak{N},M}) \otimes \mathbb{Q}$ into a graded Poisson algebra. For \mathfrak{N} consisting of even-dimensional manifolds, \star satisfies a graded Leibniz rule with respect to $[\cdot, \cdot]$, but $[\cdot, \cdot]$ does not satisfy a graded Jacobi identity. Some modifications of our algebra are sensitive to the differentiable structure on M. The mod 2-analogue of $[\cdot, \cdot]$ for one-element sets \mathfrak{N} and many other operations were previously constructed in our preprint with Rudyak.

For $\mathfrak{N} = \{S^1\}$ and 2-dimensional M our algebra is related to the Goldman-Turaev and Andersen-Mattes-Reshetikhin algebras. (Received August 12, 2006)