1021-47-76 Michael Lacey, Georgia Institute of Technology, and Erin Terwilleger*

(terwilleger@math.uconn.edu), University of Connecticut, Department of Mathematics, U-3009, Storrs, CT 06040. Hankel operators in several complex variables and product BMO.

 $H^2(\otimes_1^n \mathbb{C}_+)$ denotes the *n* parameter product Hardy space of square integrable functions analytic in each variable separately. Let P^{\oplus} and P^{\ominus} denote the natural projections of $L^2(\otimes_1^n \mathbb{C}_+)$ onto $H^2(\otimes_1^n \mathbb{C}_+)$ and $\overline{H^2(\otimes_1^n \mathbb{C}_+)}$ respectively. A Hankel operator with symbol *b* is the linear operator from $H^2(\otimes_1^n \mathbb{C}_+)$ to $\overline{H^2(\otimes_1^n \mathbb{C}_+)}$ given by $H_b\varphi := P^{\ominus}\overline{b}\varphi$. We show that

$$||H_b|| \simeq ||P^{\oplus}b||_{BMO(\otimes_1^n \mathbb{C}_+)},$$

where the norm on the right hand side is product BMO, the dual to product H^1 , as identified by S.-Y. Chang and R. Fefferman. This fact has well known equivalences in terms of commutators and the weak factorization of product H^1 . The proof we present is inductive and is influenced by the proof of Ferguson and Lacey in the two parameter case. One is able to obtain a lower bound in terms of a new BMO space with one less parameter. Then one is able to bootstrap up to the full BMO using a particular form of a lemma of Journé which occurs implicitly in the work of J. Pipher. (Received August 24, 2006)