Farid Alizadeh* (alizadeh@rutcor.rutgers.edu), 640 Bartholomew Rd, Piscataway, NJ 08854, Gabor Rudolf (grudolf@rutcor.rutgers.edu), 640 Bartholomew Rd, Piscatawy, NJ 08854, and Nilay Noyan (noyan@rutcor.rutgers.edu), 640 Bartholomew Rd, Piscataway, NJ 08854. Bilinear complementary conditions for the cone of positive polynomials.
For a closed, convex and full-dimensional cone \mathcal{K} in \mathbb{R}^{n} and its dual cone \mathcal{K}^{*} the complementary slackness condition $\langle x, s\rangle=0$ defines an n-dimensional manifold $C(\mathcal{K})$ in the space $\left\{(x, s) \mid x \in \mathcal{K}, s \in \mathcal{K}^{*}\right\}$. When \mathcal{K} is a symmetric cone (that is a self-dual cone whose automorphism group acts transitively on its interior), this manifold can be described by a set of n bilinear equalities. This fact proves to be very useful when optimizing over such cones, therefore it is natural to look for similar optimality constraints for non-symmetric cones. In this talk we examine the cone of positive polynomials of degree $2 n, \mathcal{P}$, and its dual, the moment cone \mathcal{M}. We show that there are exactly 4 linearly independent bilinear identities which hold for all (x, s) in $C(\mathcal{P})$, regardless of the dimension of the cones. We then establish similar results for the cone of positive polynomials over a finite interval and the cone of positive trigonometric polynomials. We will also present some examples of cones where our approach can be used to show that no non-trivial bilinear optimality constraints exist. (Received February 06, 2006)

