1016-32-274 Frederico Xavier* (xavier.1@nd.edu), 255 Hurley Hall, Notre Dame, IN 46556. *Rigidity of the Identity.*

The structure of the group $\operatorname{Aut}(\mathbb{C}^n)$ of biholomorphisms of \mathbb{C}^n is largely unknown if n > 1. For instance, the still unsettled jacobian conjecture claims that $\operatorname{Aut}(\mathbb{C}^n)$ contains all polynomial local biholomorphisms. In stark contrast $\operatorname{Aut}(\mathbb{C})$ is rather small, consisting of the non-constant affine linear maps. The description of $\operatorname{Aut}(\mathbb{C})$ follows from the observation that an injective holomorphic function $f: \mathbb{C} \to \mathbb{C}$ satisfying f(0) = 0 and f'(0) = 1 must be the identity. These considerations suggest that similar characterizations of the identity might be useful in understanding the structure of $\operatorname{Aut}(\mathbb{C}^n)$. Using (real) geometric methods we prove that an injective holomorphic map $f: \mathbb{C}^n \to \mathbb{C}^n$ is the identity I if and only if the power series at 0 of f - I has no terms of order $\leq 2n + 1$ and the function $|\det Df(z)| |z|^{2n} |f(z)|^{-2n}$ is subharmonic throughout \mathbb{C}^n . (Received February 14, 2006)