1025-53-193 Shay Fuchs* (s.fuchs@utoronto.ca), 1020-140 Elm Ridge Dr., Toronto, Ontario M6B 1B1, Canada. A Universal Property of the Group Spin^c.

It is possible to construct a square root of the Laplacian $\Delta = -\sum_i \frac{\partial^2}{\partial x_i^2}$ acting on smooth functions $f \in C^{\infty}(\mathbb{R}^n; \mathbb{C})$. This involves finding representations for the standard Clifford algebra of \mathbb{R}^n . On an arbitrary oriented Riemannian manifold M, a similar construction is possible, if and only if the frame bundle of M allows a (compatible) reduction from the structure group SO(n) to a group G, satisfying certain properties.

We claim that the group $Spin^{c}(n)$ is the most natural and universal choice for the group G. This suggests that the spin^c-Dirac operator associated to a spin^c manifold M may be an appropriate object to use in the definition of quantization. (Received January 22, 2007)