Bart De Bruyn* (bdb@cage.ugent.be), Ghent University, Department of Pure Mathematics, Krijgslaan 281 (S22), 9000 Gent, Belgium. Generalized quadrangles of order s with a hyperbolic line consisting of regular points.
If A is a set of points of a generalized quadrangle Q of order (s, t), then A^{\perp} denotes the set of points of Q collinear with all points of A. We also define $A^{\perp \perp}:=\left(A^{\perp}\right)^{\perp}$. If (x, y) is a pair of noncollinear points of Q, then $\{x, y\}^{\perp \perp}-$ the so-called hyperbolic line through the points x and y - contains at most $t+1$ points. If $\left|\{x, y\}^{\perp \perp}\right|=t+1$, then the pair (x, y) is called regular. A point x of Q is called regular if (x, y) is regular for every point noncollinear with x.

It has been shown about 40 years ago that a generalized quadrangle of order s containing only regular points is isomorphic to the symplectic generalized quadrangle $W(s)$ (so, s is a prime power). In the talk, we will sketch a proof of the following result.

Theorem A generalized quadrangle of order s is isomorphic to $W(s)$ if it has a hyperbolic line $\{x, y\}^{\perp \perp}$ every point of which is regular.

This is a characterization of the symplectic generalized quadrangle $W(s)$ which only needs $s+1$ regular points (in a nice position). (Received January 11, 2007)

