1025-51-20 Joseph A Thas* (jat@cage.ugent.be), Department of Pure Mathematics and Computer, Algebra - Ghent University, Krijgslaan 281 - S22, 9000 Ghent, Belgium. Generalized quadrangles and the BLT-property.

The "classical" BLT-set is a non-empty set \mathcal{B} of disjoint lines of the generalized quadrangle W(q) with the property that every line of W(q) which is not a member of \mathcal{B} meets nontrivially exactly two or none of the lines of \mathcal{B} . This object was introduced by Bader, Lunardon and Thas, and, relying on work of Payne and Kantor, many applications to generalized quadrangles of order (q, q^2) were obtained. By Shult and Thas a nonempty collection \mathcal{B} of disjoint totally singular PG(m,q)s of a nonsingular polar space \mathcal{P} satisfies the BLT-property if no line of \mathcal{P} meets nontrivially three members of \mathcal{B} . A partial m-system \mathcal{M} of a nonsingular polar space \mathcal{P} is a set of mutually disjoint totally singular mdimensional subspaces of \mathcal{P} with the property that no maximal totally singular subspace of \mathcal{P} that contains an element of \mathcal{M} intersects any other element of \mathcal{M} . Shult and Thas show that from a partial m-system satisfying the BLT-property and having suitable size, a generalized quadrangle can be constructed. We will survey this topic and mention some new results. (Received December 20, 2006)