1025-05-15 **Stephen G Hartke*** (hartke@math.uiuc.edu), Department of Mathematics, University of Illinois, Urbana, IL 61801. *Graph classes characterized both by forbidden subgraphs and degree sequences.*

Given a set \mathcal{F} of graphs, a graph G is \mathcal{F} -free if G does not contain any member of \mathcal{F} as an induced subgraph. We say that \mathcal{F} is a degree-sequence-forcing set if, for each graph G in the class \mathcal{C} of \mathcal{F} -free graphs, every realization of the degree sequence of G is also in \mathcal{C} . We prove that for any k there are finitely many minimal degree-sequence-forcing sets with cardinality k. We also give a complete characterization of the degree-sequence-forcing sets \mathcal{F} when \mathcal{F} has cardinality at most two, and partial results when \mathcal{F} has cardinality three. (Received November 28, 2006)