1017-57-9 Vladimir V. Chernov* (Vladimir.Chernov@dartmouth.edu), Mathematics Department, 6188 Bradley Hall, Dartmouth College, Hanover, NH 03755, and Yuli B Rudyak, Department of Mathematics, 358 Little Hall, University of Florida, Gainesville, FL 32611-8105. Affine Linking Invariants.

Let N_1, N_2, M be smooth oriented manifolds such that $\dim N_1 + \dim N_2 + 1 = \dim M$, and assume moreover that N_1, N_2 are closed. Let ϕ_i , i = 1, 2, be smooth mappings of N_i to M such that $Im\phi_1 \cap Im\phi_2 = \emptyset$. The classical linking number $lk(\phi_1, \phi_2)$ is defined only if $\phi_{1*}[N_1] = \phi_{2*}[N_2] = 0$ in $H_*(M)$ or in $H_*(M, \partial M)$; or if $\phi_{1*}[N_1] = \phi_{2*}[N_2]$ are torsion classes.

We generalize linking numbers to the case of $\phi_{1*}[N_1], \phi_{2*}[N_2]$ with arbitrary homology classes. This new invariant is called an "affine linking invariant" *alk*. When *lk* is defined, *alk* is a splitting of *lk* into a collection of independent invariants and it projects to *lk* under augmentation. This *alk* is a universal Vassiliev-Goussarov invariant of order ≤ 1 . When $N_1 = N_2 = S^1$ and M is three-dimensional this is related to the works of Kalfagianni, Kirk-Livingston, and Schneiderman. (Received October 26, 2005)