1017-57-32 Milena Dorota Pabiniak* (pabiniak@gwu.edu), 1922 F Street NW, Washington, DC 20052, and Jozef H Przytycki (przytyck@gwu.edu) and Radmila Sazdanovic (radmila@gwu.edu). Chromatic graph A_{3} homology from geometric properties of graphs.
We are analyzing properties of the first group of A_{3} graph homology. We concentrate on the grading implied by the interpretation of Hochschild homology as graph homology of a polygon. In particular, we prove that if G is a simple graph and v_{1}, v_{2} are vertices of G such that the distance $d\left(v_{1}, v_{2}\right) \geq 5$ and $G^{\prime}=G /\left(v_{1}=v_{2}\right)$ is a graph obtained from G by identifying vertices v_{1} and v_{2} then

$$
H_{A_{3}}^{1,2 v\left(G^{\prime}\right)-3}\left(G^{\prime}\right)=H_{A_{3}}^{1,2 v(G)-3}(G) .
$$

From this follows that:
(i) for one vertex product of two simple graphs G_{1} and G_{2}

$$
H_{A_{3}}^{1,2 v\left(G_{1} * G_{2}\right)-3}\left(G_{1} * G_{2}\right)=H_{A_{3}}^{1,2 v\left(G_{1}\right)-3}\left(G_{1}\right) \oplus H_{A_{3}}^{1,2 v\left(G_{2}\right)-3}\left(G_{2}\right) .
$$

(ii) If an edge e does not belong to any cycle of length 3 or 4 then:

$$
H_{A_{3}}^{1,2 v-3}(G-e)=H^{1,2 v-3}(G) .
$$

Further, we conjecture that:
(i) if a simple graph G has a cycle of length 3 then $H_{A_{3}}^{1,2 v(G)-3}(G)$ contains \mathbb{Z}_{3};
(ii) if $G \mid P_{3}$ is a graph obtained from a disjoint sum of G and P_{3} by identifying one edge of the graph with one edge of P_{3}, then $\operatorname{Tor}\left(H_{A_{3}}^{1,2 v\left(G \mid P_{3}\right)-3}\left(G \mid P_{3}\right)\right)=\operatorname{Tor}\left(H_{A_{3}}^{1,2 v(G)-3}(G)\right) \oplus \mathbb{Z}_{3} ;$
(Received January 30, 2006)

