1017-52-33 Valeriu Soltan* (vsoltan@gmu.edu), 4400 University Drive, MS 3F2, Fairfax, VA 22030.
Isothetic parallelotopes and the binary intersection property. Preliminary report.
A family of parallelotopes in Euclidean space E^{n} is called isothetic provided the edges of these parallelotopes are parallel to some n linearly independent directions in E^{n}. It is well-known that any family of isothetic parallelotopes has the binary intersection property (Helly number two, in other terminology): the parallelotopes have nonempty intersection if and only if any two of them have nonempty intersection.

We show that a finite family $\left\{C_{1}, \ldots, C_{k}\right\}$ of at least five convex bodies in $E^{n}, n=2,3$, consists of isothetic parallelotopes if and only if for any selection of vectors $v_{1}, \ldots, v_{k} \in E^{n}$ the family of translates $\left\{v_{1}+C_{1}, \ldots, v_{k}+C_{k}\right\}$ has the binary intersection property. (Received January 31, 2006)

