1017-26-43 Shoshana Abramovich* (abramos@math.haifa.ac.il), Department of Mathematics, University of Haifa, Mt. Carmel, 31905 Haifa, Israel, and Senka Banic and Marko Matic. Superquadratic functions in several variables.
A function $f: K_{m} \rightarrow \mathbb{R}$ is superquadratic if for every $x \in K_{m}$ there exists a vector $c(x) \in \mathbb{R}^{m}$ such that $f(y) \geq$ $f(x)+<c(x), y-x>+f(|y-x|)$ holds for all $y \in K_{m}\left(K_{m}=[0, \infty)^{m}\right)$. Superquadraticity for non negative functions is stronger than convexity unless f takes negative values. For superquadtratic functions we establish refinements of Jensen's inequality and its counterpart. Let $f: K_{m} \rightarrow \mathbb{R}$ be superquadratic and $f(0)=0$. Let $p_{i} \in \mathbb{R}, p_{i} \geq 0, i=1, \ldots, n$, and $P_{n}=\sum_{i=1}^{n} p_{i}>0$. Define $\bar{x}=\left(1 / P_{n}\right) \sum_{i=1}^{n} p_{i} x_{i}, \bar{y}=\left(1 / P_{n}\right) \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)$. We prove that, for any $x \in K_{m}$, if $c(x)$ is as above and $a, b \in K_{m}$ are arbitrary vectors then

$$
\begin{gathered}
f(a)+<c(a), \bar{x}-a>+\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(\left|x_{i}-a\right|\right) \leq \bar{y} \\
\leq f(b)+\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i}<c\left(x_{i}\right), x_{i}-b>-\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(\left|x_{i}-b\right|\right) .
\end{gathered}
$$

Examples: 1) $f(x)=\left(\|x\|_{p}\right)^{p}, p \geq 2$ is superquadratic. 2) $f(x)=\|x\|^{2} l n\|x\|$ if $x \neq 0, f(0)=0$ is superquadratic for $m=1$ but not for $m=2$. (Received February 05, 2006)

