1017-20-185 **J. Matthew Douglass*** (douglass@unt.edu), Department of Mathematics, University of North Texas, PO Box 311430, Denton, TX 76203-1430. *Alvis-Curtis duality for admissible complexes.* Preliminary report.

Suppose \mathfrak{g} is the Lie algebra of a connected, reductive algebraic group G. We will define a functor, \mathcal{D} , from the category of bounded, constructible, G-equivariant, \mathbb{Q}_l -sheaves on \mathfrak{g} to itself. This functor has the following properties:

- If A is an admissible complex on \mathfrak{g} , then so is $\mathcal{D}(A)$.
- If G is defined over an algebraic closure of a finite field, F is a Frobenius map, and A is an F-equivariant complex, then the characteristic function of $\mathcal{D}(A)$ is the Fourier transform of the characteristic function of A.
- \mathcal{D} commutes with the Deligne-Fourier transform.

The same construction applies to bounded, constructible, *G*-equivariant, \mathbb{Q}_l -sheaves on *G* and the first two statements above are true in this context. (Received February 20, 2006)