1012-42-54 Bin Han* (bhan@math.ualberta.ca), Dept of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. *Characterization of MRA Riesz Wavelet Bases* and Exponential Decay of Refinable Functions. Preliminary report.

In this talk, we shall study dyadic Riesz wavelet bases derived from refinable functions via the multiresolution analysis. Let ϕ be a refinable function in $L_2(\mathbb{R})$ satisfying the refinement equation $\hat{\phi}(2\xi) = \hat{a}(\xi)\hat{\phi}(\xi)$ for some 2π -periodic measurable function \hat{a} . Let \hat{b} be a 2π -periodic measurable function and define a wavelet function ψ by $\hat{\psi}(2\xi) := \hat{b}(\xi)\hat{\phi}(\xi)$. We say that ψ generates a Riesz wavelet basis in $L_2(\mathbb{R})$ if $\{\psi_{j,k} := 2^{j/2}\psi(2^j \cdot -k) : j, k \in \mathbb{Z}\}$ is a Riesz basis in $L_2(\mathbb{R})$. In this talk, we shall present a necessary and sufficient condition for ψ generating a Riesz wavelet basis in $L_2(\mathbb{R})$. Our characterization is based on the convergence of cascade algorithms in a subspace of $L_2(\mathbb{R})$ and some properties of the transition operators. Some examples of Riesz wavelets will be given to illustrate the general theory. As a byproduct, we shall also discuss the exponential decay of a refinable function in $L_2(\mathbb{R})$ when the mask \hat{a} has exponential decay. Joint work with Rong-Qing Jia. (Received August 30, 2005)