Susan Marie Cooper* (sucooper@math.syr.edu), Department of Mathematics, 317 H Carnegie Building, Syracuse University, Syracuse, NY 13244. Hilbert Functions of Subsets of Complete Intersections.
A characterization of which sequences of numbers can be the Hilbert function of a finite set of distinct points in \mathbb{P}^{n} follows from the work of Macaulay, Hartshorne, and others. Although Hilbert functions of complete intersections are well-known, Hilbert functions of subsets of complete intersections have not yet been classified, even for the reduced zero-dimensional case. Let $1 \leq d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ be positive integers and \mathcal{H} be a Hilbert function of some finite set of distinct points in \mathbb{P}^{n}. We wish to determine if there exists some reduced zero-dimensional complete intersection C.I. $\left(d_{1}, \ldots, d_{n}\right)$ which contains a subset whose Hilbert function is \mathcal{H}.

The special case of this problem where the ideal of the complete intersection is generated by products of linear forms follows from the combinatorial results of Clements-Lindström and Greene-Kleitman. We will show that the problem in general is connected to the Lex-Plus-Powers Conjecture of Eisenbud-Green-Harris and discuss the cases of $n=2$ and $n=3$. We conclude with applications to subsets with the Cayley-Bacharach Property and extremal subsets similar to Sub $_{d}(\mathcal{H})$. (Received September 20, 2005)

