1009-52-144 Xavier Goaoc* (goaoc@loria.fr), LORIA, 615 rue du Jardin Botanique, B.P. 101, 54602 Villers-les-Nancy, France. Pinning lines with smooth convex objects.
Let \mathcal{C} be a collection of subsets of \mathbb{R}^{d}. A line transversal to \mathcal{C} is a line that intersects all its subsets. A line ℓ is pinned by \mathcal{C} if ℓ is an isolated point of the set of line transversals to \mathcal{C}. The pinning number of \mathcal{C} is the smallest integer k such that for any line ℓ pinned by \mathcal{C} there exists a subfamily $\mathcal{C}^{\prime} \subset \mathcal{C}$ of size at most k that pins ℓ. Hadwiger proved in 1957 that an ordered set of disjoint convex sets in the plane has a line transversal if and only if every triple has a line transversal consistent with its ordering. A key step in his proof is establishing that the pinning number of any collection of disjoint convex sets in the plane is 3 .

We show any collection of disjoint, compact, smooth, strictly convex objects in \mathbb{R}^{3} has pinning number at most 5 . This generalizes Hadwiger's transversal theorem in \mathbb{R}^{3} for objects whose sets of transversals satisfy certain topological properties; we illustrate this with the case of disjoint congruent balls. This is joint work with O. Cheong (KAIST, Korea), A. Holmsen (Univ. of Bergen, Norway), S. Petitjean (LORIA-CNRS, France) and S.-H. Poon (T/U Eindhoven, The Netherlands). (Received August 14, 2005)

