M. R. Hoare and Mizan Rahman* (mRahman@math. Carleton.ca), School of Mathematics and Statistics, Carleton University, 4302 Herzberg Building, Ottawa, Ontario K1S 5B6, Canada. Probabilistic Origin of a New System of Orthogonal Polynomials in 2 Variables: a Limit Case of the 9 - j Symbols.
A brief sketch of a 2 -variable extension of a special case of a Markov model introduced by Cooper, Hoare and Rahman (1977) is given, that raises the question of the eigenvalues and eigenfunctions of the transition kernel:

$$
\begin{align*}
& K\left(i_{1}, i_{2} ; j_{1}, j_{2}\right)=\sum_{k_{1}} \sum_{k_{2}} b\left(k_{1}, i_{1} ; \alpha_{1}\right) b\left(k_{2}, i_{2} ; \alpha_{2}\right) \tag{1}\\
& \times b_{2}\left(j_{1}-k_{1}, j_{2}-k_{2} ; N-k_{1}-k_{2} ; \beta_{1}, \beta_{2}\right), \tag{2}
\end{align*}
$$

where

$$
\begin{gather*}
b(k, i ; \alpha)=\binom{i}{k} \alpha^{k}(1-\alpha)^{i-k}, \tag{3}\\
b_{2}\left(j, k ; N ; \beta_{1}, \beta_{2}\right)=\frac{N!}{j!k!(N-j-k)!} \beta_{1}^{j} \beta_{2}^{k}\left(1-\beta_{1}-\beta_{2}\right)^{N-j-k} . \tag{4}
\end{gather*}
$$

We find that $b_{2}\left(x, y ; N ; \eta_{1}, \eta_{2}\right)$ times the polynomial

$$
\begin{array}{r}
P_{m, n}(x, y)=\sum_{i} \sum_{j} \sum_{k} \sum_{\ell} \frac{(-m)_{i+j}(-n)_{k+\ell}(-x)_{i+k}(-y)_{j+\ell}}{i!j!k!!(-N)_{i+j+k+\ell}} \tag{5}\\
\times t^{i} u^{j} v^{k} w^{\ell}
\end{array}
$$

are the eigenfunctions of K, where t, u, v, w depend on the α 's and β 's in a nonlinear way, and

$$
\frac{\left(1-\alpha_{1}\right) \eta_{1}}{\beta_{1}}=\frac{\left(1-\alpha_{2}\right) \eta_{2}}{\beta_{2}}=\left(\frac{\beta_{1}}{1-\alpha_{1}}+\frac{\beta_{2}}{1-\alpha_{2}}+1-\beta_{1}-\beta_{2}\right)^{-1}
$$

These functions are discovered as a Krawtchouk limit of Wigner's $9-j$ symbols. (Received August 10, 2005)

