Let $f_{m}(a, b, c, d)$ denote the maximum size family of a family \mathcal{F} of subsets of an m-element set so that there is no pair $A, B \in \mathcal{F}$ with

$$
|A \cap B| \geq a, \quad|\bar{A} \cap B| \geq b, \quad|A \cap \bar{B}| \geq c, \quad|\bar{A} \cap \bar{B}| \geq d
$$

By symmetry we can assume $a \geq d$ and $b \geq c$. We show that $f_{m}(a, b, c, d)$ is $\Theta\left(m^{a+b-1}\right)$ if either $b>c$ or $a, b \geq 1$. We also show $f_{m}(0, b, b, 0)$ is $\Theta\left(m^{b}\right)$ and $f_{m}(a, 0,0, d)$ is $\Theta\left(m^{a}\right)$. This can be viewed as a result concerning forbidden configurations, and provides further evidence for a conjecture of Anstee and Sali.

Our key tool is a strong stability version of the Ahlswede-Khachatrian Complete Intersection Theorem, which is of independent interest. (Received August 07, 2005)

