1010-53-78 Daniel B. Dix* (dix@math.sc.edu), 400E LeConte, Department of Mathematics, University of South Carolina, Columbia, SC 29208. Graphs for indexing coordinates specifying molecular shape in $3 D$ space and some applications.
An unoriented Z-system is a triple $\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ where τ_{1} is a tree graph, τ_{2} is a spanning tree in the line graph of τ_{1} and τ_{3} is a spanning tree in the line graph of τ_{2}. Let each vertex of τ_{1} represent an atom in a molecule, and let each edge of τ_{1} be labeled with the distance in 3D space between the two atoms involved. Let each edge α of τ_{2} be labeled with an angle $0<\theta<\pi$, thought of as the angle in space between the two line segments determined by the two vertices of α. Let each edge ω of τ_{3} be labeled with a pair $\left(w^{*}, \varphi\right)$, where $-\pi<\varphi \leq \pi$ is a signed angle between the two half-planes of the two space triangles associated to the two vertices of ω. The half-planes meet in the line containing the line segment common to the two triangles. w^{*} is a combinatorial object designed to distinguish between the tetrahedron determined by the four atoms involved in ω and its mirror image. Theorem: this data uniquely determines the shape of the molecule. We use this formalism to parameterize the geometry of molecular hexagons. Z-systems for biological polymers can be obtained by gluing together the Z-systems of small monomer molecules. (Received August 19, 2005)

