Maher M Marzuq*, PO Box 7207 Hawally, 32093 Hawally, Kuwait. Integrability Theorems of Trigonometric Series. Preliminary report.
Let $f(x)$ be associated with the following cosine series

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{b} \cos n x \tag{1}
\end{equation*}
$$

where a_{n} is monotically decreasing to zero. In this paper I prove the following result:
Let $\psi(x) \sim<-1,0>$ and $\left\{a_{n}\right\}$ be a δ-quasi-monotone. If the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \delta_{n} \psi\left(\frac{1}{n}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} \psi\left(\frac{1}{n}\right) a_{n} \tag{3}
\end{equation*}
$$

converge, then the series (1) converges everywhere to $f(x)$ with possible exception at $x=0$ and

$$
\begin{equation*}
\psi(x) f(x) \in L[0, \pi] \tag{4}
\end{equation*}
$$

Conversely, if $\left\{a_{n}\right\}$ is any sequence which is ultimately positive numbers for which cosine series (1) converges to $f(x)$ everywhere with the possible exception at $x=0$ and if (4) holds, then (3) is true.

Corollaries are drawn from this theorem. (Received April 07, 2005)

