1010-35-80 Grozdena Todorova (todorova@math.utk.edu) and Borislav Yordanov* (yordanov@math.utk.edu). The energy decay problem for wave equations with nonlinear dissipative terms in \mathbb{R}^n .

We study the asymptotic behavior of energy for wave equations with nonlinear damping $u_{tt} - \Delta u + |u_t|^{m-1}u_t = 0$ in \mathbb{R}^n as $t \to \infty$. The main assumptions are $n \geq 3$ and 1 < m < (n+2)/(n+1). We show that the energy goes to zero like a negative power t^{-d} , where the exponent d is determined by m and n. (Received August 19, 2005)