Meeting: 1006, Lubbock, Texas, SS 6A, Special Session on Real Algebraic Geometry

1006-14-40 Victor I. Zvonilov* (zvonilov@syktsu.ru), Syktyvkar State University, Oktyabrskii pr. 55, 167001 Syktyvkar, Russia. Rigid isotopies of real y-trinomial curves. Preliminary report.
An algebraic curve $y^{n}+p(x) y^{m}+q(x)=0$, where $\operatorname{deg} p \leq k(n-m)$, $\boldsymbol{\operatorname { d e g }} q \leq k n$ is called y-trinomial curve. It is natural to consider it as a curve of bidegree $(0, n)$ on the Hirzebruch surface Σ_{k}. The curve is nonsingular if the y-discriminant $d=(-1)^{n-1} m^{m}(n-m)^{n-m} p^{n}+n^{n} q^{n-m}$ has no multiple roots and $\operatorname{deg} d=k n(n-m)$. The rigid isotopies of nonsingular real y-trigonal curves, i.e. the isotopies in the class of nonsingular real y-trigonal curves with fixed k, m, n, are studied. The rigid isotopy classification of nonsingular real y-trigonal curves with $d<0$ is obtained. The classification is formulated in terms of Grothendieck's dessins d'enfant. (Received January 23, 2005)

