Meeting: 1006, Lubbock, Texas, SS 6A, Special Session on Real Algebraic Geometry

1006-14-221 J. Maurice Rojas* (rojas@math.tamu.edu), TAMU 3368, Texas A\&M University, College Station, TX 77843-3368. Bounds and Algorithms for Real Polynomials Supported on Circuits. Consider an n-variate real polynomial f of degree d with $m \leq n+2$ monomial terms. We show that the zero set of f in the positive orthant has no more than n compact connected components, and no more than $2 n$ non-compact connected components. The best previous bound for the total number of connected components was $2^{O\left(n^{2}\right)}$, via a more general result of Khovanski. We then show how to decide, in many cases, the existence of a real root of f, using a number of bit operations polynomial in n and the logarithm of d. The best previous bit complexity bounds were polynomial in d^{n}. (Received February 15, 2005)

