Meeting: 1006, Lubbock, Texas, SS 6A, Special Session on Real Algebraic Geometry

1006-14-213Lina M. Williams* (lalvarez@math.ttu.edu), Department of Mathematics and Statistics,
Texas Tech University, Lubbock, TX 79409-1042, and Anatoly B. Korchagin
(korchag@math.ttu.edu), Department of Mathematics and Statistics, Texas Tech University,
Lubbock, TX 79409-1042. The classification of M-curves of bidegree (d, 3) with $d \ge 2$ on the
torus. Preliminary report.

We prove the following theorem.

Theorem. For every integer $d \ge 2$, there exist *M*-curves of bidegree (d, 3) on the torus $\mathbb{R}P^1 \times \mathbb{R}P^1$, which realize the schemes $\langle 2(d-1) \coprod (a+nb) \rangle$. The symbol 2(d-1) represents 2(d-1) connected components of an *M*-curve, which realize zero homological class of $H_1(\mathbb{R}P^1 \times \mathbb{R}P^1)$. The symbol a + nb represents the connected component of an *M*-curve, which realizes homological class a + nb of $H_1(\mathbb{R}P^1 \times \mathbb{R}P^1)$ with generators a and b, and $n \equiv d \pmod{2}$ and $n \leq d$. (Received February 15, 2005)