Meeting: 1001, Evanston, Illinois, SS 10A, Special Session on Differential Geometry

1001-53-9 Simon P Morgan* (morgan@math.umn.edu), Department of Mathematics, 127 Vincent Hall, 206 SE Curch St, Minneapolis, MN 55455. Mixed Dimensional Compactness and $\mathbb{R}^n X \mathbb{S}^{n-1}$ Sphere Bundle Measures.

N-1 dimensional Hausdorff measure on the \mathbb{S}^{n-1} bundle of \mathbb{R}^n can represent the normal or outward pointing vectors to a subset of \mathbb{R}^n of codimension at least 1. This enables a common measure to represent rectifiable subsets of different dimensions. Treating the set of normal or outward pointing vectors as an n-1 rectifiable varifold or current (in $\mathbb{R}^n X \mathbb{S}^{n-1}$) yields compactness from Geometric Measure Theory. The limit current or varifold can then project down to yield a limit rectifiable set of possible mixed dimensions in \mathbb{R}^n .

This enables sets in \mathbb{R}^n to contract down to lower dimensional sets while still being represented by a measure that does not go to zero. Hausdorff measure on \mathbb{R}^n directly and general varifolds on \mathbb{R}^n do both go to zero under such circumstances.

In this topology a sequence of unions of \mathbb{C}^2 j-rectifiable sets (j ranging from 0 to n-1) in \mathbb{R}^n with uniformly finite mass boundariless lifts in $\mathbb{R}^n X \mathbb{S}^{n-1}$ converges to a union of rectifiable sets of mixed dimensions from 0 to n-1. (Received June 18, 2004)