Meeting: 1001, Evanston, Illinois, SS 19A, Special Session on Algebraic Representations and Deformations

1001-51-260 K. C. Hannabuss and S. J. Brain* (brain@maths.ox.ac.uk). The Noncommutative Ward Correspondence. Preliminary report.

We explore the problem of generalizing the Penrose-Ward transform to the framework of Noncommutative Geometry. In the commutative case, one uses the correspondence between space-time \mathbb{C}^4 and its twistor space \mathbb{CP}^3 to construct self-dual connections.

Our goal is to understand how the Ward correspondence between certain vector bundles over \mathbb{CP}^3 and self-dual connections on bundles over compactified Minkowski space \mathbb{CS}^4 generalizes to the noncommutative paradigm. It is shown that this correspondence, upon translation into the language of Noncommutative Geometry, equates to a Morita equivalence between the algebras $C(G/H) \rtimes K$ and $H \ltimes C(G/K)$, where twistor space and Minkowski space are realized as flag manifolds G/H, G/K respectively. One may then use standard induction of representations to transform bundles over twistor space into bundles over Minkowski space equipped with a self-dual connection, and vice versa.

We then show that this Morita equivalence survives the Moyal deformation of space-time, thus setting up a noncommutative version of the Ward correspondence. (Received August 28, 2004)