Meeting: 1001, Evanston, Illinois, SS 14A, Special Session on Nonlinear Waves

1001-35-357Robert L Pego* (rpego@andrew.cmu.edu), Department of Mathematical Sciences, Carnegie
Mellon University, Pittsburgh, PA 15213, and Guido Schneider and Hannes Uecker. On the
persistence of KdV solitons in the unstable dynamics of inclined film flow. Preliminary report.

The KS-perturbed KdV-equation (KS-KdV)

$$\partial_t u + \partial_x^3 u + \frac{1}{2} \partial_x (u^2) + \varepsilon (\partial_x^2 + \partial_x^4) u = 0,$$

with $0 < \varepsilon \ll 1$ a small parameter, arises as a model equation for small-amplitude long waves on the surface of a viscous liquid running down an inclined plane, in certain regimes when the trivial Nusselt solution is sideband unstable. Individual pulses are unstable due to the long-wave instability of the flat surface, but computation and experiments suggest that the dynamics of KS-KdV is dominated by traveling pulse trains. In order to add to the understanding why this is the case, we prove that the KdV manifolds of *n* pulses are stable in KS-KdV on a time scale of order $1/\varepsilon$ with respect to perturbations that are O(1) in $H^n(R)$. (Received August 31, 2004)