Meeting: 1001, Evanston, Illinois, SS 14A, Special Session on Nonlinear Waves

1001-35-327 Hongqiu Chen* (hchen1@memphis.edu), Dept. of Math, Statistics \& Computer Science, University of Illinois at Chicago, Chicago, IL 60607, Jerry L Bona (bona@math.uic.edu), Dept. of Math, Statistics \& Computer Science, University of Illinois at Chicago, Chicago, IL 60607, Shuming Sun (sun@math.vt.edu), Department of Mathematics, Virginia Polytechnic Institute and State Univ, VA, and Bingyu Zhang (bzhang@math.uc.edu), Department of Mathematics, University of Cincinnati, Cincinnati, OH. Comparison of Quarter-plane and Two-point Boundary Value Problems: The BBM-equation. Preliminary report.
Considered here are the quarter-plane problem for the BBM-equation

$$
\left.\begin{array}{ll}
u_{t}+u_{x}+u u_{x}-u_{x x t}=0, & x \geq 0, \quad t>0 \tag{1}\\
u(0, t)=g(t), & t \geq 0, \\
u(x, 0)=0, & x \geq 0
\end{array}\right\}
$$

and the same equation with two-point boundary values

$$
\left.\begin{array}{ll}
v_{t}+v_{x}+v v_{x}-v_{x x t}=0, & 0 \leq x \leq L, \tag{2}\\
v(0, t)=g(t), v(L, t)=0, & t \geq 0 \\
v(x, 0)=0, & 0 \leq x \leq L
\end{array}\right\}
$$

Suppose the following compatible conditions

$$
u(0,0)=v(0,0)=g(0)=0
$$

hold true. The main result is that if $g \in H^{1}\left(\mathbb{R}^{+}\right)$, then both problems are well posed in $C^{\infty}\left(\mathbb{R}^{+}\right)$globally in time, and for any fixed point $(x, t) \in \mathbb{R}^{+} \times \mathbb{R}^{+}, \lim _{L \rightarrow \infty} v(x, t)=u(x, t)$. (Received August 31, 2004)

