Meeting: 1001, Evanston, Illinois, SS 22A, Special Session on Special Functions, Orthogonal Polynomials, and their Applications

1001-33-227 Paul M Terwilliger* (terwilli@math.wisc.edu), Math Department, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706. The compact representation of a Leonard pair. Preliminary report.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ that satisfy both conditions below: (i)There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^{*} is diagonal; (ii) There exists a basis for V with respect to which the matrix representing A^{*} is irreducible tridiagonal and the matrix representing A is diagonal. We call such a pair a Leonard pair on V. There is a natural correspondence between the Leonard pairs and a class of orthogonal polynomials consisting of the q-Racah and related polynomials in the Askey Scheme. Let A, A^{*} denote a Leonard pair on V. Associated with this pair is a certain parameter q that is used to describe the eigenvalues. For the case $q \neq 1, q \neq-1$, we display a basis for V with respect to which the matrix representing $A A^{*}-q A^{*} A$ is upper triangular and the matrix representing $A^{*} A-q A A^{*}$ is lower triangular. With respect to this basis the matrices representing A, A^{*} are tridiagonal, with entries of an attractive form. We call this basis the compact basis. This is joint work with Hjalmar Rosengren. (Received August 27, 2004)

