Meeting: 1001, Evanston, Illinois, SS 9A, Special Session on Solving Polynomial Systems

1001-12-121 Christopher J Hillar* (chillar@math.berkeley.edu), Dept. Mathematics, University of California, Berkeley, Berkeley, CA 94720. Reconstructing dynamical systems from their zeta functions.
The m-th cyclic resultant of a polynomial $f \in \mathbb{C}[x]$ is

$$
r_{m}=\operatorname{Res}\left(f, x^{m}-1\right)
$$

We characterize polynomials having the same set of nonzero cyclic resultants. Sequences of the form r_{m} arise (among many other places) as the cardinalities of sets of periodic points for toral endomorphisms. Let f be monic of degree d with integral coefficients and let $X=\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ denote the d-dimensional additive torus. Then, the companion matrix A_{f} of f acts on X by multiplication $\bmod 1$; that is, it defines a map $T: X \rightarrow X$ given by

$$
T(\mathbf{x})=A_{f} \mathbf{x} \bmod \mathbb{Z}^{d}
$$

Let $\operatorname{Per}_{m}(T)=\left\{\mathbf{x} \in \mathbb{T}^{d}: T^{m}(\mathbf{x})=\mathbf{x}\right\}$ be the set of points fixed under the map T^{m}. Under the ergodicity condition that no zero of f is a root of unity, it turns out that $\left|r_{m}(f)\right|=\left|\operatorname{Per}_{m}(T)\right|$. We describe how our results allow for reconstruction of such dynamical systems from their zeta functions,

$$
Z(T, z)=\exp \left(-\sum_{m=1}^{\infty}\left|\operatorname{Per}_{m}(T)\right| \frac{z^{m}}{m}\right)
$$

(Received August 19, 2004)

