Meeting: 1001, Evanston, Illinois, SS 2A, Special Session on Extremal Combinatorics

1001-05-394 Tom Bohman* (tbohman@moser.math.cmu.edu), Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, and David Kravitz. Creating a giant component.
Let c be a constant and $\left(e_{1}, f_{1}\right),\left(e_{2}, f_{2}\right), \ldots,\left(e_{c n}, f_{c n}\right)$ be a sequence of ordered pairs of edges on vertex set $[n]=$ $\{1,2, \ldots, n\}$ chosen uniformly and independently at random. Let A be an algorithm for the on-line choice of one edge from each presented pair, and for $i=1, \ldots, c n$ let $G_{A}(i)$ be the graph on vertex set [n] consisting of the first i edges chosen by A. In this talk we will discuss a number of questions regarding the component structure of these random graphs and give the sketch of a proof that all algorithms in a certain class have a critical value c_{A} for the emergence of a component of size $\Omega(n)$ in $G_{A}(c n)$. (Received August 31, 2004)

