Meeting: 1001, Evanston, Illinois, SS 2A, Special Session on Extremal Combinatorics

1001-05-391 Robert B. Ellis* (rellis@math.tamu.edu), Department of Mathematics, MS 3368, Texas A\&M University, College Station, TX 77843-3368, Xingde Jia, Texas State University-San Marcos, Jeremy L. Martin, University of Minnesota, and Catherine H. Yan, Texas A\&M University. Random geometric graph diameter threshold in the unit disk. Preliminary report.
Let n be a positive integer, and $\lambda>0$ a real number. Let V_{n} be a set of n points randomly located within the unit disk, which are mutually independent. Define $G(\lambda, n)$ to be the graph with the vertex set V, in which two vertices are adjacent if and only if their Euclidean distance is at most λ. We call this graph the unit disk random graph. M. Penrose proved that the threshold λ_{c} for graph connectivity coincides with the threshold λ_{1} for minimum vertex degree ≥ 1; for the unit disk random graph this value is $\lambda_{c}=\lambda_{1}=\sqrt{\ln n / n}$. We examine the graph diameter of $G(\lambda, n)$ as soon as λ exceeds $\sqrt{\ln n / n}$, employing the following fact: There exists an absolute constant K such that if $G(\lambda, n)$ is connected, any two vertices u, v are connected by a path in $G(\lambda, n)$ of length at most $K d(u, v) / \lambda$, where $d(u, v)$ is the Euclidean distance between u and v. (Received August 31, 2004)

