Meeting: 1001, Evanston, Illinois, SS 2A, Special Session on Extremal Combinatorics

1001-05-154 Maria Axenovich* (axenovic@math.iastate.edu), 400 Carver Hall, Ames, IA 50011. On colored arithmetic progressions.
Let $[n]=\{1, \ldots, n\}$ be colored. Under what conditions on the coloring are there monochromatic or totally multicolored arithmetic progressions of fixed length k ? Szemerédi's theorem claims that it is sufficient to have one dense color class to have a monochromatic progression. We investigate the two natural conditions for the existence of totally multicolored progressions:

1. The size of the largest color class is bounded from above by $f(n, k)$.
2. The size of the smallest color class is bounded from below by $g(n, k)$ and the number of colors is fixed.

Among others, we determine the functions f and g exactly for $k=3$ thus answering an old question of Alon et al. and proving a conjecture of Jungic.

This is a joint work with Dmitri Fon-Der-Flaass and Ryan Martin. (Received August 23, 2004)

