Meeting: 999, Nashville, Tennessee, SS 10A, Special Session on Geometry of Hyperbolic Manifolds

999-57-270 Marc Culler, IL, and Peter B. Shalen* (shalen@math.uic.edu), Dept. of Math., Stats. and Comp. Sci., University of Illinois at Chicago, 851 S. Morgan, Chicago, IL 60607. Hyperbolic volume and mod 2 homology, Part I. Preliminary report.
We have proved the following result:
Geometric Theorem. Let M be a closed, orientable, hyperbolic 3-manifold such that $H_{1}(M ; \mathbf{Z} / 2 \mathbf{Z})$ has rank at least 7. Then the volume of M is at least $2 V_{3}$, where $V_{3}=1.0149 \ldots$ is the volume of a regular ideal tetrahedron in \mathbf{H}^{3}.

The proof of the Geometric Theorem involves the following more technical result:
Topological Theorem. Let Let M be a closed, orientable, irreducible 3-manifold such that $H_{1}(M ; \mathbf{Z} / 2 \mathbf{Z})$ has rank at least 7 and $\pi_{1}(M)$ has no rank-2 free abelian subgroup. Suppose that $\pi_{1}(M)$ contains a freely indecomposable subgroup of rank 3. Then some 2 -sheeted covering space M_{1} of M contains a compact (possibly disconnected) 3-dimensional submanifold X such that (i) ∂X is incompressible, (ii) $-4 \leq \chi(X) \leq-2$, and (iii) $\chi(\overline{X-\Sigma}) \leq-2$, where Σ denotes the characteristic submanifold of X relative to ∂X.

In this talk I will show how to deduce the Geometric Theorem by combining the Topological Theorem with results due to Anderson-Canary-Culler-Shalen and Shalen-Wagreich, and two results due to Agol. (Received August 24, 2004)

